4.3 Solving Quadratic Functions Homework

Sketch the graph of each function. Be sure to have 5 critical points, label the axis of symmetry, vertex, y-intercept and x-intercepts.

1) $y = x^2 - 2x - 8$

Axis of symmetry: 2 X=1

Vertex: (1,-9)

y-intercept: (0,-8)

X - intercera: (X-A)(X+5) = 0

other point) (2,-8)

2) $y = 4x^2 + 8x - 2$

Axis of symmetry: (30) X=-1

ID: 1

vertex: (-1,-6)

Y-intercert: (0,-2)

X-intercept:

other points:

(1,10)

Solve each equation by factoring. (Use the Zero Product Property)

3)
$$2x^2 + 5x = 12$$

2x2+5x-12=0

4)
$$7b^2 + 35b = -28$$

762 +350 +28 = 0

7(67+56+4)=0 7(0-14) Cot 2,=0 (4,0)(-1,0)

Solve each equation by taking square roots.

5)
$$4x^2 + 9 = 205$$

6)
$$x^2 + 6 = 2$$

7)
$$5(m-8)^2 = 25$$

8)
$$(2x-3)^2-8=41$$

Solve each equation with the quadratic formula. Round your answet to the nearest hundredth.

9)
$$2x^2 - 75 = -5x$$

 $2x^2 + 5x - 75 = 0$

10)
$$2n^2 - 3n = 14$$

Quadratic Application Problems

11. The height of a flare can be approximated by the function $h = -16t^2 + 95t + 6$, where h is the height in feet and t is the time in seconds. Find the time it takes the flare to hit the ground.

$$0 = -10t^{2} + 95t + 10$$

$$0 = -1(10t^{2} - 15t - 10)$$

$$0 = -1(14t - 1)(14t - 10)$$

$$(8t - 1)(12t - 10)$$

$$(10t + 1)(12t - 10)$$

$$t = -1(10t - 10)$$

- 12. A tree box is 48 feet above its fairway. Starting with an initial elevation of 48 feet at the tree box and an initial velocity of 32 ft/s, the quadratic equation $0 = -16t^2 + 32t + 48$ gives the time t in seconds when a golf ball is at height 0 feet on the fairway.
- (a) Solve the quadratic equation by factoring to see how long the ball is in the air.

(b) What is the height of the ball at 1 second? (just replace the t in the original function with 1)

(c) Is the ball at its maximum height at 1 second? Explain

Waximum neRug = rayex;

Ves the vertex is asecond, but

13. The legs of a right triangle have lengths (x - 4) units and (x - 8) units. The hypotenuse has a length of x units. What is the value of the perimeter of the right triangle. Hint: Apply the Pythagorean Theorem and Factor!

The state of the s